3.16.11 \(\int \sec ^5(c+d x) \sin ^n(c+d x) (a+b \sin (c+d x))^2 \, dx\) [1511]

3.16.11.1 Optimal result
3.16.11.2 Mathematica [A] (verified)
3.16.11.3 Rubi [A] (verified)
3.16.11.4 Maple [F]
3.16.11.5 Fricas [F]
3.16.11.6 Sympy [F(-1)]
3.16.11.7 Maxima [F]
3.16.11.8 Giac [F]
3.16.11.9 Mupad [F(-1)]

3.16.11.1 Optimal result

Integrand size = 29, antiderivative size = 160 \[ \int \sec ^5(c+d x) \sin ^n(c+d x) (a+b \sin (c+d x))^2 \, dx=\frac {\left (a^2 (3-n)-b^2 (1+n)\right ) \operatorname {Hypergeometric2F1}\left (2,\frac {1+n}{2},\frac {3+n}{2},\sin ^2(c+d x)\right ) \sin ^{1+n}(c+d x)}{4 d (1+n)}+\frac {a b (2-n) \operatorname {Hypergeometric2F1}\left (2,\frac {2+n}{2},\frac {4+n}{2},\sin ^2(c+d x)\right ) \sin ^{2+n}(c+d x)}{2 d (2+n)}+\frac {\sec ^4(c+d x) \sin ^{1+n}(c+d x) \left (a^2+b^2+2 a b \sin (c+d x)\right )}{4 d} \]

output
1/4*(a^2*(3-n)-b^2*(1+n))*hypergeom([2, 1/2+1/2*n],[3/2+1/2*n],sin(d*x+c)^ 
2)*sin(d*x+c)^(1+n)/d/(1+n)+1/2*a*b*(2-n)*hypergeom([2, 1+1/2*n],[1/2*n+2] 
,sin(d*x+c)^2)*sin(d*x+c)^(2+n)/d/(2+n)+1/4*sec(d*x+c)^4*sin(d*x+c)^(1+n)* 
(a^2+b^2+2*a*b*sin(d*x+c))/d
 
3.16.11.2 Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 158, normalized size of antiderivative = 0.99 \[ \int \sec ^5(c+d x) \sin ^n(c+d x) (a+b \sin (c+d x))^2 \, dx=\frac {\left (2 \left (3 a^2-b^2\right ) \operatorname {Hypergeometric2F1}\left (1,\frac {1+n}{2},\frac {3+n}{2},\sin ^2(c+d x)\right )+(a-b) (3 a+b) \operatorname {Hypergeometric2F1}(2,1+n,2+n,-\sin (c+d x))+(3 a-b) (a+b) \operatorname {Hypergeometric2F1}(2,1+n,2+n,\sin (c+d x))+2 (a-b)^2 \operatorname {Hypergeometric2F1}(3,1+n,2+n,-\sin (c+d x))+2 (a+b)^2 \operatorname {Hypergeometric2F1}(3,1+n,2+n,\sin (c+d x))\right ) \sin ^{1+n}(c+d x)}{16 d (1+n)} \]

input
Integrate[Sec[c + d*x]^5*Sin[c + d*x]^n*(a + b*Sin[c + d*x])^2,x]
 
output
((2*(3*a^2 - b^2)*Hypergeometric2F1[1, (1 + n)/2, (3 + n)/2, Sin[c + d*x]^ 
2] + (a - b)*(3*a + b)*Hypergeometric2F1[2, 1 + n, 2 + n, -Sin[c + d*x]] + 
 (3*a - b)*(a + b)*Hypergeometric2F1[2, 1 + n, 2 + n, Sin[c + d*x]] + 2*(a 
 - b)^2*Hypergeometric2F1[3, 1 + n, 2 + n, -Sin[c + d*x]] + 2*(a + b)^2*Hy 
pergeometric2F1[3, 1 + n, 2 + n, Sin[c + d*x]])*Sin[c + d*x]^(1 + n))/(16* 
d*(1 + n))
 
3.16.11.3 Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.12, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {3042, 3316, 558, 25, 557, 278}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^5(c+d x) \sin ^n(c+d x) (a+b \sin (c+d x))^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^n (a+b \sin (c+d x))^2}{\cos (c+d x)^5}dx\)

\(\Big \downarrow \) 3316

\(\displaystyle \frac {b^5 \int \frac {\sin ^n(c+d x) (a+b \sin (c+d x))^2}{\left (b^2-b^2 \sin ^2(c+d x)\right )^3}d(b \sin (c+d x))}{d}\)

\(\Big \downarrow \) 558

\(\displaystyle \frac {b^5 \left (\frac {\sin ^{n+1}(c+d x) \left (a^2+2 a b \sin (c+d x)+b^2\right )}{4 b \left (b^2-b^2 \sin ^2(c+d x)\right )^2}-\frac {\int -\frac {\sin ^n(c+d x) \left ((3-n) a^2+2 b (2-n) \sin (c+d x) a-b^2 (n+1)\right )}{\left (b^2-b^2 \sin ^2(c+d x)\right )^2}d(b \sin (c+d x))}{4 b^2}\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b^5 \left (\frac {\int \frac {\sin ^n(c+d x) \left ((3-n) a^2+2 b (2-n) \sin (c+d x) a-b^2 (n+1)\right )}{\left (b^2-b^2 \sin ^2(c+d x)\right )^2}d(b \sin (c+d x))}{4 b^2}+\frac {\sin ^{n+1}(c+d x) \left (a^2+2 a b \sin (c+d x)+b^2\right )}{4 b \left (b^2-b^2 \sin ^2(c+d x)\right )^2}\right )}{d}\)

\(\Big \downarrow \) 557

\(\displaystyle \frac {b^5 \left (\frac {\left (a^2 (3-n)-b^2 (n+1)\right ) \int \frac {\sin ^n(c+d x)}{\left (b^2-b^2 \sin ^2(c+d x)\right )^2}d(b \sin (c+d x))+2 a b (2-n) \int \frac {\sin ^{n+1}(c+d x)}{\left (b^2-b^2 \sin ^2(c+d x)\right )^2}d(b \sin (c+d x))}{4 b^2}+\frac {\sin ^{n+1}(c+d x) \left (a^2+2 a b \sin (c+d x)+b^2\right )}{4 b \left (b^2-b^2 \sin ^2(c+d x)\right )^2}\right )}{d}\)

\(\Big \downarrow \) 278

\(\displaystyle \frac {b^5 \left (\frac {\sin ^{n+1}(c+d x) \left (a^2+2 a b \sin (c+d x)+b^2\right )}{4 b \left (b^2-b^2 \sin ^2(c+d x)\right )^2}+\frac {\frac {\left (a^2 (3-n)-b^2 (n+1)\right ) \sin ^{n+1}(c+d x) \operatorname {Hypergeometric2F1}\left (2,\frac {n+1}{2},\frac {n+3}{2},\sin ^2(c+d x)\right )}{b^3 (n+1)}+\frac {2 a (2-n) \sin ^{n+2}(c+d x) \operatorname {Hypergeometric2F1}\left (2,\frac {n+2}{2},\frac {n+4}{2},\sin ^2(c+d x)\right )}{b^2 (n+2)}}{4 b^2}\right )}{d}\)

input
Int[Sec[c + d*x]^5*Sin[c + d*x]^n*(a + b*Sin[c + d*x])^2,x]
 
output
(b^5*((Sin[c + d*x]^(1 + n)*(a^2 + b^2 + 2*a*b*Sin[c + d*x]))/(4*b*(b^2 - 
b^2*Sin[c + d*x]^2)^2) + (((a^2*(3 - n) - b^2*(1 + n))*Hypergeometric2F1[2 
, (1 + n)/2, (3 + n)/2, Sin[c + d*x]^2]*Sin[c + d*x]^(1 + n))/(b^3*(1 + n) 
) + (2*a*(2 - n)*Hypergeometric2F1[2, (2 + n)/2, (4 + n)/2, Sin[c + d*x]^2 
]*Sin[c + d*x]^(2 + n))/(b^2*(2 + n)))/(4*b^2)))/d
 

3.16.11.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 557
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Sym 
bol] :> Simp[c   Int[(e*x)^m*(a + b*x^2)^p, x], x] + Simp[d/e   Int[(e*x)^( 
m + 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x]
 

rule 558
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), 
 x_Symbol] :> With[{Qx = PolynomialQuotient[(c + d*x)^n, a + b*x^2, x], f = 
 Coeff[PolynomialRemainder[(c + d*x)^n, a + b*x^2, x], x, 0], g = Coeff[Pol 
ynomialRemainder[(c + d*x)^n, a + b*x^2, x], x, 1]}, Simp[(-(e*x)^(m + 1))* 
(f + g*x)*((a + b*x^2)^(p + 1)/(2*a*e*(p + 1))), x] + Simp[1/(2*a*(p + 1)) 
  Int[(e*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[2*a*(p + 1)*Qx + f*(m + 2*p + 
 3) + g*(m + 2*p + 4)*x, x], x], x]] /; FreeQ[{a, b, c, d, e, m}, x] && IGt 
Q[n, 1] &&  !IntegerQ[m] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3316
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b^p* 
f)   Subst[Int[(a + x)^m*(c + (d/b)*x)^n*(b^2 - x^2)^((p - 1)/2), x], x, b* 
Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IntegerQ[(p - 1) 
/2] && NeQ[a^2 - b^2, 0]
 
3.16.11.4 Maple [F]

\[\int \left (\sec ^{5}\left (d x +c \right )\right ) \left (\sin ^{n}\left (d x +c \right )\right ) \left (a +b \sin \left (d x +c \right )\right )^{2}d x\]

input
int(sec(d*x+c)^5*sin(d*x+c)^n*(a+b*sin(d*x+c))^2,x)
 
output
int(sec(d*x+c)^5*sin(d*x+c)^n*(a+b*sin(d*x+c))^2,x)
 
3.16.11.5 Fricas [F]

\[ \int \sec ^5(c+d x) \sin ^n(c+d x) (a+b \sin (c+d x))^2 \, dx=\int { {\left (b \sin \left (d x + c\right ) + a\right )}^{2} \sin \left (d x + c\right )^{n} \sec \left (d x + c\right )^{5} \,d x } \]

input
integrate(sec(d*x+c)^5*sin(d*x+c)^n*(a+b*sin(d*x+c))^2,x, algorithm="frica 
s")
 
output
integral((2*a*b*sec(d*x + c)^5*sin(d*x + c) - (b^2*cos(d*x + c)^2 - a^2 - 
b^2)*sec(d*x + c)^5)*sin(d*x + c)^n, x)
 
3.16.11.6 Sympy [F(-1)]

Timed out. \[ \int \sec ^5(c+d x) \sin ^n(c+d x) (a+b \sin (c+d x))^2 \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**5*sin(d*x+c)**n*(a+b*sin(d*x+c))**2,x)
 
output
Timed out
 
3.16.11.7 Maxima [F]

\[ \int \sec ^5(c+d x) \sin ^n(c+d x) (a+b \sin (c+d x))^2 \, dx=\int { {\left (b \sin \left (d x + c\right ) + a\right )}^{2} \sin \left (d x + c\right )^{n} \sec \left (d x + c\right )^{5} \,d x } \]

input
integrate(sec(d*x+c)^5*sin(d*x+c)^n*(a+b*sin(d*x+c))^2,x, algorithm="maxim 
a")
 
output
integrate((b*sin(d*x + c) + a)^2*sin(d*x + c)^n*sec(d*x + c)^5, x)
 
3.16.11.8 Giac [F]

\[ \int \sec ^5(c+d x) \sin ^n(c+d x) (a+b \sin (c+d x))^2 \, dx=\int { {\left (b \sin \left (d x + c\right ) + a\right )}^{2} \sin \left (d x + c\right )^{n} \sec \left (d x + c\right )^{5} \,d x } \]

input
integrate(sec(d*x+c)^5*sin(d*x+c)^n*(a+b*sin(d*x+c))^2,x, algorithm="giac" 
)
 
output
integrate((b*sin(d*x + c) + a)^2*sin(d*x + c)^n*sec(d*x + c)^5, x)
 
3.16.11.9 Mupad [F(-1)]

Timed out. \[ \int \sec ^5(c+d x) \sin ^n(c+d x) (a+b \sin (c+d x))^2 \, dx=\int \frac {{\sin \left (c+d\,x\right )}^n\,{\left (a+b\,\sin \left (c+d\,x\right )\right )}^2}{{\cos \left (c+d\,x\right )}^5} \,d x \]

input
int((sin(c + d*x)^n*(a + b*sin(c + d*x))^2)/cos(c + d*x)^5,x)
 
output
int((sin(c + d*x)^n*(a + b*sin(c + d*x))^2)/cos(c + d*x)^5, x)